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Question.



Question.

How do (inbound) open innovation practices influence innovation performance?



Motivation & Contribution.



Motivation & Contribution.

Develop a set of empirically robust results through replication and introduce a
new empirical approach to research in strategic management.



Motivation & Approach.

How robust are the findings? — Replication of the analyses.

Step (1) Large scale robustness study for
DE, FR, & UK (7,841 firms)

Step (2) Bayesian Averaging of Classical Estimators (BACE)

- Aim is to provide a set of empirically robust results on the determinants of firm-
level innovation performance

introduction of new to the firm and

new to the world innovations

(e.g., Cassiman and Veugelers, 2006; Laursen and Salter, 2006; Leiponen and Helfat,
2010; Garriga, von Krogh, and Spaeth, 2013)

Implications for innovation research, and explore the potential application of our
approach to other domains of research in strategic management



Data & Measures.



Data & Measures.

Broad data set: CIS 4 for DE, FR, UK

Broad set of measures: Ballot et al. (2015), Cassiman and Veugelers (2006),
Garriga et al. (2013), Grimpe and Kaiser (2010), Laursen and Salter (2006),
Leiponen and Helfat (2010), Leiponen (2005a), Love et al. (2014), Roper et al.

(2008), Schmiedeberg (2008)



Data & Measures

Dependent variables
INNOFIRM: share of sales of products new to the firm (log)
INNOWORLD: share of sales of products new to the world (log)

Potential predictors

Inbound Open Innovation:

- Search: BREADTH and DEPTH; information flows USER, COMPINFO, value of information
BASICINFO and PUBINFO

. Collaboration: COLLAB and depth COLDEPTH.
R&D: total R&D share of expenditure in 2004
. Markets: INTMKT for international and NATMKT for national
.- Appropriability strategy: formal IPF and informal appropriability IPNF

. Obstacles to innovation: financial obstacles to innovation (OBSFIN), knowledge obstacles to
innovation (OBSKNOW), and market obstacles to innovation (OBSMKT)

- Make or buy: MAKEONLY, BUYONLY, MAKEBUY
Firm demographics: Firm size (LOGEMP), STARTUP, 11 sector and 3 country dummies.



Step 1.
Replication / Robustness



Model Specification

- Focus on main models built in
. Laursen and Salter (2006)
. Cassiman and Veugelers (2006)
. Schmiedeberg (2008)

- Dependent variables explained by Tobit regressions
. INNOWORLD: share of sales of products new to the world (log)

.- INNOFIRM: share of sales of products new to the firm (log)
In this presentation only the results for the latter are documented.



Table X2: Regression of sales share of innovation new to the firm (INNOFIEM, W=7 384)

(1) (2) (3) (4] (3) (a)
BREADTH 0.328"(0.050)  0.352" (0.050) 023577 (0.055) 0231 (0.033
BREADTH2 0,019 (0.004)  -0.022" (0.004) 00157 (0004) 0,017 (0.004)
DEPTH 0.129% (0.056) 0.074 (0.056)
DEPTH2 -0.012 (0.009) -0.009 (0.009)
DEPTH=FD -0.003 (0.043)
USER 0167 (0.074) 02717 (0.061) 0.110 (0.075) 0.148% (0.064]
COMPINEFO 027877 (0.031) 0.156™ (0.039) 0163 (0.038)
BASICINFO 0.028 (0.062) -0.057 (0.071) -0.022(0.071)
PUBINED 0.105™ (0.054) -0.001 (0.059) 0.001 (0.03%)
COLLABE 0.376™ (0.063) 0.341™ (0.064)
COLDEPTH 0.196™* (0.053) 0,196 (0.020) 0.172** (0.053)
COLDEPTHI -0.010 (0.011) -0.007 (0.011)
COLDEPTH=ED -0.140 (0.132) -0.019 (0.044)
ED -0.089 (0.044) -0.091 (0.048) -0.063 (0.047) 0.109 (0.13%) -0.079 (0177 -0.044 (0.094)
INTMET 0337 (0.0B8) 0345 (0.0B7) 030777 (0.088) 04117 (0.088) 02657 (0.088) 0272***(0.08T)
NATWMET 0.170° (0.097) 0,150 (0.087) 0.153 (0.097) 0.1827 (0.098) 0.128 (0.097) 0.107 (D.087)
OBSEIN -0.078 (0.061) -0.098 (0.061) -0.108% {0061}
OBSENOW -0.093 (0.081) -0.098 (0.081) -0.106 (0.081)
OBSMEKT 024777 (0.070) 023377 (00700 0236 (0.069)
MAKEONLY 0.54177 (0.171) 0.429%(0.171) 0447 (0.171)
BUYONLY 0.130 (0.169) 0.00001 (0.170) 0.014 (0.16%9)
MAKEBUY 0.9537 (0.158) 0.723"° (01600  0.729%** (0.159)
LOGEMP -0.024 (0.021) -0.029 (0.021) -0.023 (0.021) -0.004 (0.021)  -0.046™ (0.021)  -0.053* (0.021)
STARTUP 0.090 (0.242) 0.106 (0.242) 0.131 (0.240) 0.141 (0.240)
STARTUP=ED 0.895% (0.472) 0.910% (0.472) 0.924™ (0.469) 0.883% (0.473)
CONSTANT 146777 (0.211)  -1.34777 (0211 -1.10377 (02100 -0.144 (0.158)  -1.53B7(0.243)  -1.437"7(0.243)
sector controls Tes Tes Tes Tes Tes Yes
Country conirols Tes Tes Tes Tes Tes Yes
Log Likelihood -11,425.600 -11,413.4%0 -11,408.430 -11,4481.5320 -11,371.030 -11.361.140
Wald Test 436.529™ 451.311:]:" 12.346™ 334754 538.124™ 559.107*

{df =24) {(df =23) (df=25) (df = 18) (df =34) (df=33)
%%, *% and * indicate significance at 1 per cent, 3 per cent and 10 per cent levels respectively. Six industry dummies,

Naote: Coefficients of Tobit regressions, standard emors in parentheses. Underlining indicates that variables loose or gain

sighificance depending on the other variables in the model

Model 1, 2
~ Laursen & Salter (2006)

Model 3
~ Cassiman & Veugelers (2006)

Model 4
~ Schmiedeberg (2008)

Model 5, 6
~ Combination of all models /
all variables



One Insight From the Regressions.

- Variable gain or lose significance depending on other variables included in the
models

Results must be interpreted conditional on the assumption that in each case,
the estimated model is the ‘true’ model: where predictors are appropriate to
explain innovation performance

But: Do we know the ‘true’ model?

- Which predictors should be included in the regression model.
It is unclear which model to be estimated.
Different sets of predictors and different models with dramatically different conclusions.

Disregarding model uncertainty leads to overconfident inferences based on
statistical estimates.



Step 2:
Model Uncertainty and Model Averaging.



Model Uncertainty & Model Averaging.

- Model averaging techniques provide a solution to model uncertainty based

- on several plausible models,
. (weighted) averaging over those models, and

- drawing inferences based on their weighted averages.

- Model parameters are estimated

- and also structure of the model are estimated
- Non-Bayesian and Bayesian approaches

- Key idea of model averaging: Using several models rather than a single model to
make inferences



Specification.

.- Account for model uncertainty and modify the Bayesian Averaging of Classical
Estimators BACE approach (Sala-i-Martin et al., 2004; Jones and Schneider, 2006) for
the Tobit regressions

Entire model space {M,,..M,,..M } of Kk models where each model consists of a
different set of predictors

- Typically: after regressing the k models, BACE approach computes the weighted
average of the estimation results with weights (Sala-i-Martin et al., 2004)

Full enumeration (22° = 540 million Tobit models) is not possible.

. We implement a Markov Chain Monte Carlo Model Composition (MCMCMC or
MC3): search the model space and collect information from the relevant parts of
the posterior model distribution

600,000 MC3 iterations: discard first 300,000 iterations "burn-in steps"
Analysis based on the results of the remaining 300,000 MC3 iterations



Specification.

- The averaging
EBID)= ) P(MiID)- B
k=1

- Weights for the averaging is the posterior model probability P(M, |D):
P(D[My) - P(My)

iz1  P(DIM;) - P(M;)

P(My|D) =

.- P(D|M;) measures how well M; explains the data D. For the Tobit models we use
P(D|My) = g(BICk)

- Prior model probability

Z

5 .
P(M,,) = 1_[ T Y1 —m)tom.

j=1
m; = 0.5 is the prior probability that B; is not zero (robustness with 0.3 and 0.7).

k; 1s an indicator for variable j to be part of the model M,



Specification.

- The averaging
K

EBID) = ) [P(MIDY- B

k=1

- Weights for the averaging is the posterior model probability P(M,|D):
P(D|My)|-|P (M)

?:1 | P(DlMi)l P(Mj)

- P(D|M,) measures how well M, explains the data D. For the Tobit models we use
P(D|My)|= g(BICk)

P(My|D) =

- Prior model probability

Z

5 .
P(M,,) = 1_[ T (1 - )t ou,

j=1
m; = 0.5 is the prior probability that B; is not zero (robustness with 0.3 and 0.7).

Sk; 1s an indicator for variable j to be part of the model M,



(1) (2) 3) (4)
Postenior Postenior
inclusion mean Fraction of
R l t probability conditional Sign certainty — regressions
e S U S Variables (PIF) oninclusion  probability  with p=10%
BREADTH 1.000 0.267 1.000 1.000
BREADTH2 1.000 0.019 0.000 1.000
. Col (1): Posterior inclusion probability ERHDTH”RD gggg ;]Sé_f i’ggg ‘:G;;
(PIP) is the sum of the probabilities of those m— 0000 - } i}
models that include this predictor DEPTH-ED 0.049 0.022 0333 0.667
. . USER 0.017 0.161 1.000 1.000
- Probability of each of the potential COMPINFO 1000 0.195 1.000 1,000
predlctors to be part of the true’ model BASICINFO 0,000 {0028 0.000 0.000
0.50 < PIP < 0.75: weak evidence PUBINFO 0.000 0.025 0.001 0.000
. . COLLAR 0.000 0.346 1.000 1.000
0.75 < PIP < 0.90: positive evidence COLDEPTH 0.007 0.133 1,000 1,000
0.90 < PIP < 0.99: strong evidence COLDEPTH2 0.003 0.024 1.000 1,000
BIP > 0.99: decisive evidence COLDEPTH=RD 0.325 0,054 0.000 0.116
RD 0.000 0243 0.000 0.000
- Column (2): mean parameter estimate for all FD2 0.000 0088 0000 0.003
the models that include the corresponding INIMET 0.21 0291 1.000 1000
bl NATMKT 0.000 0.227 1.000 0.707
variapble IPF 0.350 0.075 1.000 1.000
: . IPNF 0.003 0.062 1.000 1.000
- Robustness of the estimate of the effect: OBSEIN 0000 Py 000 0,000
Column (3): fraction of the models with a OBSKNOW 0.000 0,092 0.000 0.000
positive parameter conditional on OBSMKT 0.682 0.210 1.000 1.000
Inclusion MAKEONLY 1.000 0.471 1.000 1.000
Column (4): fraction of the models with a iﬁ;ﬁ}; fgﬁg Sij i";ﬁ; féﬁ{;
significant parameter conditional on ' ' ‘ '
nelusion LOGEMP 0.010 0,050 0.000 0.906
STARTUP 0.000 0.266 1.000 0.000
STARTUP=RD 0.009 0.915 1.000 1.000

Table Y2: Model averaging results — sales share of innovations
new to the firm (INNOFIEM)

Note: Analyziz based on 600,000 MCMC iterations which meludes 3080, ({{) burn-m
tterations. CorrPME = 0.998. Sector controls and country confrols are always part of
the models. The parameters base on the 1.000 best models. Vanables wath a PIP =
0.500 are in bold.



Table Y2: Model averaging results — sales share of innovations
new to the firm (INNOFIEM)

(1) (2) (3) (4
Postenor Postenor
mclozion mean Fraction of
R e S u lt S | probability conditional  Sign certainty — regressions
Variables (PIF} on meclusion probablity with p=10%:
BREADTH 1.000 0.267 1.000 1.000
BREADTH? 1.000 -0.019 0.000 1.000
. . BREADTH+<RD 0.000 0,018 0.000 0211
Model averaging approaCh prowdes DEPTH 0.000 0.065 1.000 1.000
DEPTH? 0.000 ; - ;
DEPTH+ED 0.049 0.022 0.333 0.667
. . USER 0.017 0.161 1.000 1.000
- Decisive evidence for COMPINFO 1.000 0.195 1.000 1.000
BASICINFO 0.000 -0.028 0.000 0.000
+ BREADTH (+) PUBINFO 0.000 -0.025 0.001 0.000
. BREADTH2 (-) ... inverse U-shape COLLAB 0.000 0.346 1.000 1.000
COLDEPTH 0.997 0.133 1.000 1.000
- COMPINFO (+) COLDEPTH2 0.003 0.024 1.000 1.000
. COLDEPTH (+) COLDEPTH=RD 0.32 -0.054 0.000 0.116
ED 0.000 0243 0.000 0.000
- MAKEONLY (+) RD2 0.000 0,089 0.000 0.005
. MAKEBUY (+) INTMET 0.215 0.291 1.000 1.000
NATMET 0.000 0.227 1.000 0.707
IFF 0.350 0.075 1.000 1.000
IPNF 0.003 0.062 1.000 1.000
. OBSFIN 0.000 0.075 0.000 0.000
+ Weak evidence for OBSENOW 0.000 -0.092 0.000 0.000
. OBSMKT (+) OBSMET 0.682 0.210 1.000 1.000
MAKEONLY 1.000 0.471 1.000 1.000
BUYONLY 0.000 0232 0.293 0.707
MAKEBUY 1.000 0.737 1.000 1.000
LOGEMP 0.010 0,050 0.000 0.906
STARTUP 0.000 0.266 1.000 0.000
STARTUP=RD 0.009 0916 1.000 1.000

Note: Analyziz based on 600,000 MCMC iterations which meludes 3080, ({{) burn-m
tterations. CorrPME = 0.998. Sector controls and country confrols are always part of
the models. The parameters base on the 1.000 best models. Vanables wath a PIP =
0.500 are in bold.



Conclusion.



Conclusion.

Accounting for model uncertainty allows us to investigate the robust determinants of
Innovation performance.

Innovation new to the firm (INNOFIRM) closely related to

external search breadth and an inverted U-shaped relationship between openness

and innovation, collaboration matters, make or buy decision influences innovation,
market obstacles (positive)

information from competitors is important for new to firm innovation

little support for the more traditional variables: R&D, size, firm age, or
appropriability strategy, obstacles to innovation, and market orientation

More radical innovations (INNOWORLD) closely related to

user involvement, international market, capturing rents through formal and informal
appropriability strategies, collaboration depth when interacted with internal R&D
(absorptive capacity), make or buy decision, market obstacles (negative) .

little evidence of some more traditional innovation variables: R&D, size,
collaboration, breadth of external search
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